Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

* (for bipartitions) 3.4
* (for PBRs) 4.4
* (for matrices over a semiring) 5.2
* (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7
< (for bipartitions) 3.4
< (for PBRs) 4.4
< (for matrices over a semiring) 5.2
< (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7
= (for bipartitions) 3.4
= (for PBRs) 4.4
= (for matrices over a semiring) 5.2
= (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7
\<, for Green's classes 10.3-1
\in 5.3-3
^ (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7
AnnularJonesMonoid 7.3-5
AntiIsomorphismDualFpMonoid 6.5-9
AntiIsomorphismDualFpSemigroup 6.5-9
AntiIsomorphismDualSemigroup 8.2-4
ApsisMonoid 7.3-11
AsBipartition 3.3-1
AsBlockBijection 3.3-2
AsBooleanMat 5.3-2
AsCongruenceByWangPair 13.8-3
AsInverseSemigroupCongruenceByKernelTrace 13.7-3
AsList 5.1-10
AsListCanonical 11.1-1
AsMatrix, for a filter and a matrix 5.1-6
    for a filter, matrix, and threshold 5.1-6
    for a filter, matrix, threshold, and period 5.1-6
AsMonoid 6.5-4
AsMutableList 5.1-10
AsPartialPerm, for a bipartition 3.3-4
    for a PBR 4.3-3
AsPBR 4.3-1
AsPermutation, for a bipartition 3.3-5
    for a PBR 4.3-4
AsSemigroup 6.5-3
AsSemigroupCongruenceByGeneratingPairs 13.6-6
AsSemigroupHomomorphismByFunction, for a semigroup homomorphism by images 14.1-6
AsSemigroupHomomorphismByImages, for a semigroup homomorphism by function 14.1-5
AsSemigroupIsomorphismByFunction, for a semigroup homomorphism by images 14.2-11
AsTransformation, for a bipartition 3.3-3
    for a PBR 4.3-2
AutomorphismGroup, for a semigroup 14.2-7
Bipartition 3.2-1
BipartitionByIntRep 3.2-2
Bitranslation, for IsBitranslationsSemigroup, IsLeftTranslation, IsRightTranslation 18.1-6
BlistNumber 5.3-7
BLOCKS_NC 3.6-2
BooleanMat 5.3-1
BooleanMatNumber 5.3-6
BrandtSemigroup 7.8-7
BrauerMonoid 7.3-2
CanonicalBlocks 3.5-18
CanonicalBooleanMat 5.3-8
    for a perm group and boolean matrix 5.3-8
    for a perm group, perm group and boolean matrix 5.3-8
CanonicalForm, for a free inverse semigroup element 7.11-6
CanonicalMultiplicationTable 14.2-3
CanonicalMultiplicationTablePerm 14.2-4
CanonicalReesMatrixSemigroup 14.3-6
CanonicalReesZeroMatrixSemigroup 14.3-6
CanonicalTransformation 11.11-9
CanUseFroidurePin 6.1-4
CanUseGapFroidurePin 6.1-4
CanUseLibsemigroupsFroidurePin 6.1-4
CatalanMonoid 7.1-1
CayleyDigraphOfCongruences, for a semigroup 13.4-6
    for a semigroup and a list or collection 13.4-6
CayleyDigraphOfLeftCongruences, for a semigroup 13.4-6
    for a semigroup and a list or collection 13.4-6
CayleyDigraphOfRightCongruences, for a semigroup 13.4-6
    for a semigroup and a list or collection 13.4-6
CharacterTableOfInverseSemigroup 11.14-10
ClosureInverseMonoid 6.4-1
ClosureInverseSemigroup 6.4-1
ClosureMonoid 6.4-1
ClosureSemigroup 6.4-1
CodomainOfBipartition 3.5-11
ComponentRepsOfPartialPermSemigroup 11.12-1
ComponentRepsOfTransformationSemigroup 11.11-1
ComponentsOfPartialPermSemigroup 11.12-2
ComponentsOfTransformationSemigroup 11.11-2
CompositionMapping2, for IsRMSIsoByTriple 14.3-4
    for IsRZMSIsoByTriple 14.3-4
CongruenceByWangPair 13.8-2
CongruencesOfPoset 13.4-8
CongruencesOfSemigroup, for a semigroup 13.4-1
    for a semigroup and a multiplicative element collection 13.4-1
ContentOfFreeBandElement 7.9-7
ContentOfFreeBandElementCollection 7.9-7
CrossedApsisMonoid 7.3-11
CyclesOfPartialPerm 11.12-3
CyclesOfPartialPermSemigroup 11.12-4
CyclesOfTransformationSemigroup 11.11-3
DClass 10.1-2
DClasses 10.1-4
DClassNC 10.1-3
DClassOfHClass 10.1-1
DClassOfLClass 10.1-1
DClassOfRClass 10.1-1
DClassReps 10.1-5
DegreeOfBipartition 3.5-1
DegreeOfBipartitionCollection 3.5-1
DegreeOfBipartitionSemigroup 3.8-5
DegreeOfBlocks 3.6-5
DegreeOfPBR 4.5-2
DegreeOfPBRCollection 4.5-2
DegreeOfPBRSemigroup 4.6-2
DigraphOfAction, for a transformation semigroup, list, and action 11.11-4
DigraphOfActionOnPoints, for a transformation semigroup 11.11-5
    for a transformation semigroup and an integer 11.11-5
DimensionOfMatrixOverSemiring 5.1-3
DimensionOfMatrixOverSemiringCollection 5.1-4
DirectProduct 8.1-1
DirectProductOp 8.1-1
DomainOfBipartition 3.5-10
DotLeftCayleyDigraph 16.1-4
DotRightCayleyDigraph 16.1-4
DotSemilatticeOfIdempotents 16.1-3
DotString 16.1-1
    for a Cayley digraph 16.1-2
DualSemigroup 8.2-1
DualSymmetricInverseMonoid 7.3-7
DualSymmetricInverseSemigroup 7.3-7
ElementOfFpMonoid 15.2-3
ElementOfFpSemigroup 15.2-2
ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7
ELM_LIST, for IsRMSIsoByTriple 14.3-3
EmbeddingFpMonoid 6.5-10
EmptyPBR 4.2-3
EndomorphismMonoid, for a digraph 7.1-6
    for a digraph and vertex coloring 7.1-6
EndomorphismsPartition 7.1-2
Enumerate 11.1-3
EnumeratorCanonical 11.1-1
EqualInFreeBand 7.9-8
EquivalenceRelationCanonicalLookup, for an equivalence relation over a finite semigroup 13.3-6
EquivalenceRelationCanonicalPartition 13.3-7
EquivalenceRelationLookup, for an equivalence relation over a finite semigroup 13.3-5
EUnitaryInverseCover 11.14-11
EvaluateWord 11.5-1
ExtRepOfObj, for a bipartition 3.5-3
    for a blocks 3.6-3
    for a PBR 4.5-3
FactorisableDualSymmetricInverseMonoid 7.3-8
Factorization 11.5-2
FixedPointsOfTransformationSemigroup, for a transformation semigroup 11.11-6
FpTietzeIsomorphism 15.8-4
FreeBand, for a given rank 7.9-1
    for a list of names 7.9-1
    for various names 7.9-1
FreeInverseSemigroup, for a given rank 7.11-1
    for a list of names 7.11-1
    for various names 7.11-1
FreeMonoidAndAssignGeneratorVars 15.2-4
FreeSemigroupAndAssignGeneratorVars 15.2-4
FreeSemilattice 7.8-4
FullBooleanMatMonoid 7.6-1
FullMatrixMonoid 7.5-1
FullPBRMonoid 7.4-1
FullTropicalMaxPlusMonoid 7.7-1
FullTropicalMinPlusMonoid 7.7-2
GeneralLinearMonoid 7.5-1
GeneratingCongruencesOfJoinSemilattice 13.4-12
GeneratingCongruencesOfLattice 13.8-4
Generators 11.6-1
GeneratorsOfSemigroupIdeal 9.2-1
GeneratorsOfStzPresentation 15.3-3
GeneratorsSmallest, for a semigroup 11.6-5
GLM 7.5-1
GossipMonoid 7.6-5
GraphInverseSemigroup 7.10-1
GraphOfGraphInverseSemigroup 7.10-5
GreensDClasses 10.1-4
GreensDClassOfElement 10.1-2
    for a free band and element 7.9-9
GreensDClassOfElementNC 10.1-3
GreensHClasses 10.1-4
GreensHClassOfElement 10.1-2
    for a Rees matrix semigroup 10.1-2
GreensHClassOfElementNC 10.1-3
GreensJClasses 10.1-4
GreensLClasses 10.1-4
GreensLClassOfElement 10.1-2
GreensLClassOfElementNC 10.1-3
GreensRClasses 10.1-4
GreensRClassOfElement 10.1-2
GreensRClassOfElementNC 10.1-3
GroupHClass 10.4-1
GroupOfUnits 11.8-1
HallMonoid 7.6-4
HClass 10.1-2
    for a Rees matrix semigroup 10.1-2
HClasses 10.1-4
HClassNC 10.1-3
HClassReps 10.1-5
HomomorphismsOfStrongSemilatticeOfSemigroups 8.3-7
Ideals, for a semigroup 9.1-2
IdempotentGeneratedSubsemigroup 11.9-3
Idempotents 11.9-1
IdentityBipartition 3.2-3
IdentityPBR 4.2-4
ImagesElm, for IsRMSIsoByTriple 14.3-5
ImageSetOfTranslation, for IsSemigroupTranslation 18.1-16
ImagesRepresentative, for IsRMSIsoByTriple 14.3-5
IndecomposableElements 11.6-6
IndexOfVertexOfGraphInverseSemigroup 7.10-9
IndexPeriodOfSemigroupElement 11.4-1
InfoSemigroups 2.5-1
InjectionNormalizedPrincipalFactor 10.4-7
InjectionPrincipalFactor 10.4-7
InnerLeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-13
InnerRightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-13
InnerTranslationalHull, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-14
Integers 5.1-8
IntRepOfBipartition 3.5-4
InverseMonoidByGenerators 6.2-1
InverseOp 5.6-1
    for an integer matrix 5.5-1
InverseSemigroupByGenerators 6.2-1
InverseSemigroupCongruenceByKernelTrace 13.7-2
InverseSubsemigroupByProperty 6.4-3
IrredundantGeneratingSubset 11.6-3
IsActingSemigroup 6.1-2
IsAntiSymmetricBooleanMat 5.3-13
IsAperiodicSemigroup 12.1-19
IsBand 12.1-1
IsBipartition 3.1-1
IsBipartitionCollColl 3.1-2
IsBipartitionCollection 3.1-2
IsBipartitionMonoid 3.8-1
IsBipartitionPBR 4.5-8
IsBipartitionSemigroup 3.8-1
IsBitranslation, for IsAssociativeElement and IsMultiplicativeElementWithOne 18.1-2
IsBitranslationCollection 18.1-3
IsBlockBijection 3.5-16
IsBlockBijectionMonoid 3.8-2
IsBlockBijectionPBR 4.5-8
IsBlockBijectionSemigroup 3.8-2
IsBlockGroup 12.1-2
IsBlocks 3.6-1
IsBooleanMat 5.1-8
IsBooleanMatCollColl 5.1-9
IsBooleanMatCollection 5.1-9
IsBooleanMatMonoid 5.7-2
IsBooleanMatSemigroup 5.7-1
IsBrandtSemigroup 12.2-2
IsCayleyDigraphOfCongruences 13.4-4
IsCliffordSemigroup 12.2-1
IsColTrimBooleanMat 5.3-9
IsCombinatorialSemigroup 12.1-19
IsCommutativeSemigroup 12.1-3
IsCompletelyRegularSemigroup 12.1-4
IsCompletelySimpleSemigroup 12.1-22
IsCongruenceByWangPair 13.8-1
IsCongruenceClass 13.3-1
IsCongruenceFreeSemigroup 12.1-5
IsCongruencePoset 13.4-4
IsConnectedTransformationSemigroup, for a transformation semigroup 11.11-10
IsDTrivial 12.1-19
IsDualSemigroupElement 8.2-3
IsDualSemigroupRep 8.2-2
IsDualTransBipartition 3.5-13
IsDualTransformationPBR 4.5-10
IsEmptyPBR 4.5-5
IsEnumerated 11.1-4
IsEquivalenceBooleanMat 5.3-16
IsEUnitaryInverseSemigroup 12.2-3
IsFactorisableInverseMonoid 12.2-6
IsFinite 5.7-3
IsFInverseMonoid 12.2-5
IsFInverseSemigroup 12.2-4
IsFreeBand, for a given semigroup 7.9-3
IsFreeBandCategory 7.9-2
IsFreeBandElement 7.9-4
IsFreeBandElementCollection 7.9-5
IsFreeBandSubsemigroup 7.9-6
IsFreeInverseSemigroup 7.11-3
IsFreeInverseSemigroupCategory 7.11-2
IsFreeInverseSemigroupElement 7.11-4
IsFreeInverseSemigroupElementCollection 7.11-5
IsFullMatrixMonoid 7.5-3
IsGeneralLinearMonoid 7.5-3
IsGraphInverseSemigroup 7.10-4
IsGraphInverseSemigroupElement 7.10-4
IsGraphInverseSemigroupElementCollection 7.10-6
IsGraphInverseSubsemigroup 7.10-7
IsGreensClassNC 10.3-3
IsGreensDGreaterThanFunc 10.1-12
IsGroupAsSemigroup 12.1-7
IsHTrivial 12.1-19
IsIdempotentGenerated 12.1-8
IsIdentityPBR 4.5-6
IsIntegerMatrixMonoid 5.7-2
IsIntegerMatrixSemigroup 5.7-1
IsInverseSemigroupCongruenceByKernelTrace 13.7-1
IsInverseSemigroupCongruenceClassByKernelTrace 13.7-6
IsIsomorphicSemigroup 14.2-1
IsJoinIrreducible 12.2-7
IsLeftCongruenceClass 13.3-2
IsLeftSemigroupCongruence 13.1-2
IsLeftSimple 12.1-9
IsLeftTranslation, for IsSemigroupTranslation 18.1-1
IsLeftTranslationCollection 18.1-3
IsLeftZeroSemigroup 12.1-10
IsLinkedTriple 13.6-5
IsLTrivial 12.1-19
IsMajorantlyClosed 12.2-8
IsMatrixOverFiniteField 5.1-8
IsMatrixOverFiniteFieldCollColl 5.1-9
IsMatrixOverFiniteFieldCollection 5.1-9
IsMatrixOverFiniteFieldMonoid 5.7-2
IsMatrixOverFiniteFieldSemigroup 5.7-1
IsMatrixOverSemiring 5.1-1
IsMatrixOverSemiringCollColl 5.1-2
IsMatrixOverSemiringCollection 5.1-2
IsMatrixOverSemiringMonoid 5.7-2
IsMatrixOverSemiringSemigroup 5.7-1
IsMaximalSubsemigroup 11.10-3
IsMaxPlusMatrix 5.1-8
IsMaxPlusMatrixCollColl 5.1-9
IsMaxPlusMatrixCollection 5.1-9
IsMaxPlusMatrixMonoid 5.7-2
IsMaxPlusMatrixSemigroup 5.7-1
IsMcAlisterTripleSemigroup 8.4-1
IsMcAlisterTripleSemigroupElement 8.4-7
IsMinPlusMatrix 5.1-8
IsMinPlusMatrixCollColl 5.1-9
IsMinPlusMatrixCollection 5.1-9
IsMinPlusMatrixMonoid 5.7-2
IsMinPlusMatrixSemigroup 5.7-1
IsMonogenicInverseMonoid 12.2-10
IsMonogenicInverseSemigroup 12.2-9
IsMonogenicMonoid 12.1-12
IsMonogenicSemigroup 12.1-11
IsMonoidAsSemigroup 12.1-13
IsMTSE 8.4-7
IsNTPMatrix 5.1-8
IsNTPMatrixCollColl 5.1-9
IsNTPMatrixCollection 5.1-9
IsNTPMatrixMonoid 5.7-2
IsNTPMatrixSemigroup 5.7-1
IsomorphismMonoid 6.5-2
IsomorphismPermGroup 6.5-5
IsomorphismReesMatrixSemigroup, for a D-class 10.4-7
    for a semigroup 6.5-8
IsomorphismReesMatrixSemigroupOverPermGroup 6.5-8
IsomorphismReesZeroMatrixSemigroup 6.5-8
IsomorphismReesZeroMatrixSemigroupOverPermGroup 6.5-8
IsomorphismSemigroup 6.5-1
IsomorphismSemigroups 14.2-6
IsOntoBooleanMat 5.3-14
IsOrthodoxSemigroup 12.1-14
IsPartialOrderBooleanMat 5.3-15
IsPartialPermBipartition 3.5-15
IsPartialPermBipartitionMonoid 3.8-3
IsPartialPermBipartitionSemigroup 3.8-3
IsPartialPermPBR 4.5-11
IsPBR 4.1-1
IsPBRCollColl 4.1-2
IsPBRCollection 4.1-2
IsPBRMonoid 4.6-1
IsPBRSemigroup 4.6-1
IsPermBipartition 3.5-14
IsPermBipartitionGroup 3.8-4
IsPermPBR 4.5-12
IsRectangularBand 12.1-15
IsRectangularGroup 12.1-16
IsReesCongruenceClass 13.9-2
IsReflexiveBooleanMat 5.3-11
IsRegularGreensClass 10.3-2
IsRegularSemigroup 12.1-17
IsRightCongruenceClass 13.3-3
IsRightSemigroupCongruence 13.1-3
IsRightSimple 12.1-9
IsRightTranslation, for IsSemigroupTranslation 18.1-1
IsRightTranslationCollection 18.1-3
IsRightZeroSemigroup 12.1-18
IsRMSCongruenceByLinkedTriple 13.6-1
IsRMSCongruenceClassByLinkedTriple 13.6-3
IsRMSIsoByTriple 14.3-1
IsRowTrimBooleanMat 5.3-9
IsRTrivial 12.1-19
IsRZMSCongruenceByLinkedTriple 13.6-1
IsRZMSCongruenceClassByLinkedTriple 13.6-3
IsRZMSIsoByTriple 14.3-1
IsSelfDualSemigroup 12.1-29
IsSemiband 12.1-8
IsSemigroupCongruence 13.1-1
IsSemigroupHomomorphismByFunction 14.1-4
IsSemigroupHomomorphismByImages 14.1-3
IsSemigroupIsomorphismByFunction 14.2-10
IsSemigroupTranslation, for IsAssociativeElement and IsMultiplicativeElementWithOne 18.1-1
IsSemigroupTranslationCollection 18.1-3
IsSemigroupWithAdjoinedZero 12.1-20
IsSemilattice 12.1-21
IsSimpleSemigroup 12.1-22
IsSSSE 8.3-3
IsStrongSemilatticeOfSemigroups 8.3-4
IsStzPresentation 15.3-2
IsSubrelation 13.5-1
IsSubsemigroupOfFpMonoid 15.2-5
IsSuperrelation 13.5-2
IsSurjectiveSemigroup 12.1-6
IsSymmetricBooleanMat 5.3-10
IsSynchronizingSemigroup, for a transformation semigroup 12.1-23
IsTorsion 5.7-4
    for an integer matrix 5.5-2
IsTotalBooleanMat 5.3-14
IsTransBipartition 3.5-12
IsTransformationBooleanMat 5.3-17
IsTransformationPBR 4.5-9
IsTransitive, for a transformation semigroup and a pos int 11.11-7
    for a transformation semigroup and a set 11.11-7
IsTransitiveBooleanMat 5.3-12
IsTrimBooleanMat 5.3-9
IsTropicalMatrix 5.1-8
IsTropicalMatrixCollection 5.1-9
IsTropicalMatrixMonoid 5.7-2
IsTropicalMatrixSemigroup 5.7-1
IsTropicalMaxPlusMatrix 5.1-8
IsTropicalMaxPlusMatrixCollColl 5.1-9
IsTropicalMaxPlusMatrixCollection 5.1-9
IsTropicalMaxPlusMatrixMonoid 5.7-2
IsTropicalMaxPlusMatrixSemigroup 5.7-1
IsTropicalMinPlusMatrix 5.1-8
IsTropicalMinPlusMatrixCollColl 5.1-9
IsTropicalMinPlusMatrixCollection 5.1-9
IsTropicalMinPlusMatrixMonoid 5.7-2
IsTropicalMinPlusMatrixSemigroup 5.7-1
IsUniformBlockBijection 3.5-17
IsUnitRegularMonoid 12.1-24
IsUniversalPBR 4.5-7
IsUniversalSemigroupCongruence 13.10-1
IsUniversalSemigroupCongruenceClass 13.10-2
IsVertex, for a graph inverse semigroup element 7.10-3
IsZeroGroup 12.1-25
IsZeroRectangularBand 12.1-26
IsZeroSemigroup 12.1-27
IsZeroSimpleSemigroup 12.1-28
IteratorCanonical 11.1-1
IteratorFromGeneratorsFile 17.1-3
IteratorFromMultiplicationTableFile 17.2-3
IteratorOfDClasses 10.2-2
IteratorOfDClassReps 10.2-1
IteratorOfHClassReps 10.2-1
IteratorOfLClassReps 10.2-1
IteratorOfLeftCongruences, for a semigroup 13.4-15
    for a semigroup, and a positive integer 13.4-15
    for a semigroup, positive integer, and list or collection 13.4-15
IteratorOfRClasses 10.2-2
IteratorOfRightCongruences, for a semigroup 13.4-15
    for a semigroup, and a positive integer 13.4-15
    for a semigroup, positive integer, and list or collection 13.4-15
JClasses 10.1-4
JoinIrreducibleDClasses 11.14-2
JoinLeftSemigroupCongruences 13.5-4
JoinRightSemigroupCongruences 13.5-4
JoinSemigroupCongruences 13.5-4
JoinSemilatticeOfCongruences 13.4-11
JonesMonoid 7.3-3
KernelOfSemigroupCongruence 13.7-4
KernelOfSemigroupHomomorphism 14.1-7
LargestElementSemigroup 11.11-8
LatticeOfCongruences, for a semigroup 13.4-5
    for a semigroup and a list or collection 13.4-5
LatticeOfLeftCongruences, for a semigroup 13.4-5
    for a semigroup and a list or collection 13.4-5
LatticeOfRightCongruences, for a semigroup 13.4-5
    for a semigroup and a list or collection 13.4-5
LClass 10.1-2
LClasses 10.1-4
LClassNC 10.1-3
LClassOfHClass 10.1-1
LClassReps 10.1-5
LeftBlocks 3.5-6
LeftCayleyDigraph 11.2-1
LeftCongruencesOfSemigroup, for a semigroup 13.4-1
    for a semigroup and a multiplicative element collection 13.4-1
LeftGreensMultiplier 10.5-1
LeftInverse, for a matrix over finite field 5.4-2
LeftOne, for a bipartition 3.2-4
LeftPartOfBitranslation 18.1-4
LeftProjection 3.2-4
LeftSemigroupCongruence 13.2-2
LeftTranslation, for IsLeftTranslationsSemigroup, IsGeneralMapping 18.1-5
LeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-10
LeftTranslationsSemigroupOfFamily, for IsFamily 18.1-8
LeftZeroSemigroup 7.8-6
Length 15.3-6
LengthOfLongestDClassChain 10.1-11
MajorantClosure 11.14-3
Matrix, for a filter and a matrix 5.1-5
    for a semiring and a matrix 5.1-5
MaximalDClasses 10.1-7
MaximalLClasses 10.1-7
MaximalRClasses 10.1-7
MaximalSubsemigroups, for a finite semigroup 11.10-1
    for a finite semigroup and a record 11.10-1
McAlisterTripleSemigroup 8.4-2
McAlisterTripleSemigroupAction 8.4-6
McAlisterTripleSemigroupElement 8.4-8
McAlisterTripleSemigroupGroup 8.4-3
McAlisterTripleSemigroupPartialOrder 8.4-4
McAlisterTripleSemigroupSemilattice 8.4-5
MeetLeftSemigroupCongruences 13.5-3
MeetRightSemigroupCongruences 13.5-3
MeetSemigroupCongruences 13.5-3
MinimalCongruences, for a congruence poset 13.4-13
    for a list or collection 13.4-13
MinimalCongruencesOfSemigroup, for a semigroup 13.4-2
    for a semigroup and a multiplicative element collection 13.4-2
MinimalDClass 10.1-6
MinimalFactorization 11.5-3
MinimalFaithfulTransformationDegree 14.2-13
MinimalIdeal 11.7-1
MinimalIdealGeneratingSet 9.2-2
MinimalInverseMonoidGeneratingSet 11.6-4
MinimalInverseSemigroupGeneratingSet 11.6-4
MinimalLeftCongruencesOfSemigroup, for a semigroup 13.4-2
    for a semigroup and a multiplicative element collection 13.4-2
MinimalMonoidGeneratingSet 11.6-4
MinimalRightCongruencesOfSemigroup, for a semigroup 13.4-2
    for a semigroup and a multiplicative element collection 13.4-2
MinimalSemigroupGeneratingSet 11.6-4
MinimalWord, for free inverse semigroup element 7.11-7
MinimumGroupCongruence 13.7-7
Minorants 11.14-4
ModularPartitionMonoid 7.3-10
MonogenicSemigroup 7.8-2
MotzkinMonoid 7.3-6
MTSE 8.4-8
MultiplicativeNeutralElement, for an H-class 10.4-5
MultiplicativeZero 11.7-3
MunnSemigroup 7.2-1
NambooripadLeqRegularSemigroup 11.15-1
NambooripadPartialOrder 11.15-2
NaturalLeqBlockBijection 3.4-3
NaturalLeqInverseSemigroup 11.14-1
NaturalLeqPartialPermBipartition 3.4-2
NonTrivialEquivalenceClasses 13.3-4
NonTrivialFactorization 11.5-4
NormalizedPrincipalFactor 10.4-8
NormalizeSemigroup 5.7-5
NrBitranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12
NrBlocks, for a bipartition 3.5-9
    for blocks 3.5-9
NrDClasses 10.1-9
NrHClasses 10.1-9
NrIdempotents 11.9-2
NrLClasses 10.1-9
NrLeftBlocks 3.5-7
NrLeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12
NrMaximalSubsemigroups 11.10-2
NrRClasses 10.1-9
NrRegularDClasses 10.1-8
NrRightBlocks 3.5-8
NrRightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12
NrTransverseBlocks, for a bipartition 3.5-2
    for blocks 3.6-4
NumberBlist 5.3-7
NumberBooleanMat 5.3-6
NumberOfLeftCongruences, for a semigroup 13.4-14
    for a semigroup, and a positive integer 13.4-14
    for a semigroup, positive integer, and list or collection 13.4-14
NumberOfRightCongruences, for a semigroup 13.4-14
    for a semigroup, and a positive integer 13.4-14
    for a semigroup, positive integer, and list or collection 13.4-14
NumberPBR 4.5-4
OnBlist 5.3-4
OnLeftBlocks 3.7-2
OnLeftCongruenceClasses 13.3-8
OnMultiplicationTable 14.2-5
OnRightBlocks 3.7-1
OnRightCongruenceClasses 13.3-9
Order 5.5-3
OrderAntiEndomorphisms 7.1-5
OrderEndomorphisms, monoid of order preserving transformations 7.1-5
ParseRelations 15.2-1
PartialBrauerMonoid 7.3-2
PartialDualSymmetricInverseMonoid 7.3-7
PartialJonesMonoid 7.3-4
PartialOrderAntiEndomorphisms 7.1-5
PartialOrderEndomorphisms 7.1-5
PartialOrderOfDClasses 10.1-10
PartialOrderOfLClasses 10.1-10
PartialOrderOfRClasses 10.1-10
PartialPermLeqBipartition 3.4-1
PartialTransformationMonoid 7.1-3
PartialUniformBlockBijectionMonoid 7.3-8
PartitionMonoid 7.3-1
PBR 4.2-1
PBRNumber 4.5-4
PeriodNTPMatrix 5.1-12
PermLeftQuoBipartition 3.4-4
PlanarModularPartitionMonoid 7.3-10
PlanarPartitionMonoid 7.3-9
PlanarUniformBlockBijectionMonoid 7.3-8
PODI, monoid of order preserving or reversing partial perms 7.2-3
POI, monoid of order preserving partial perms 7.2-3
POPI, monoid of orientation preserving partial perms 7.2-3
PORI, monoid of orientation preserving or reversing partial perms 7.2-3
PosetOfCongruences 13.4-10
PosetOfPrincipalCongruences, for a semigroup 13.4-7
    for a semigroup and a multiplicative element collection 13.4-7
PosetOfPrincipalLeftCongruences, for a semigroup 13.4-7
    for a semigroup and a multiplicative element collection 13.4-7
PosetOfPrincipalRightCongruences, for a semigroup 13.4-7
    for a semigroup and a multiplicative element collection 13.4-7
PositionCanonical 11.1-2
PrimitiveIdempotents 11.14-5
PrincipalCongruencesOfSemigroup, for a semigroup 13.4-3
    for a semigroup and a multiplicative element collection 13.4-3
PrincipalFactor 10.4-8
PrincipalLeftCongruencesOfSemigroup, for a semigroup 13.4-3
    for a semigroup and a multiplicative element collection 13.4-3
PrincipalRightCongruencesOfSemigroup, for a semigroup 13.4-3
    for a semigroup and a multiplicative element collection 13.4-3
ProjectionFromBlocks 3.6-6
RadialEigenvector 5.6-2
Random, for a semigroup 11.3-1
RandomBipartition 3.2-7
RandomBlockBijection 3.2-7
RandomInverseMonoid 6.6-1
RandomInverseSemigroup 6.6-1
RandomMatrix, for a filter and a matrix 5.1-7
    for a semiring and a matrix 5.1-7
RandomMonoid 6.6-1
RandomPBR 4.2-2
RandomSemigroup 6.6-1
RandomWord, for two integers 15.1-2
Range, for a graph inverse semigroup element 7.10-2
RankOfBipartition 3.5-2
RankOfBlocks 3.6-4
RClass 10.1-2
RClasses 10.1-4
RClassNC 10.1-3
RClassOfHClass 10.1-1
RClassReps 10.1-5
ReadGenerators 17.1-1
ReadMultiplicationTable 17.2-1
RectangularBand 7.8-3
ReflexiveBooleanMatMonoid 7.6-3
RegularBooleanMatMonoid 7.6-2
RegularDClasses 10.1-8
RelationsOfStzPresentation 15.3-4
RepresentativeOfMinimalDClass 11.7-2
RepresentativeOfMinimalIdeal 11.7-2
RightBlocks 3.5-5
RightCayleyDigraph 11.2-1
RightCongruencesOfSemigroup, for a semigroup 13.4-1
    for a semigroup and a multiplicative element collection 13.4-1
RightCosetsOfInverseSemigroup 11.14-6
RightGreensMultiplier 10.5-1
RightInverse, for a matrix over finite field 5.4-2
RightOne, for a bipartition 3.2-5
RightPartOfBitranslation 18.1-4
RightProjection 3.2-5
RightSemigroupCongruence 13.2-3
RightTranslation, for IsRightTranslationsSemigroup, IsGeneralMapping 18.1-5
RightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-10
RightTranslationsSemigroupOfFamily, for IsFamily 18.1-8
RightZeroSemigroup 7.8-6
RMSCongruenceByLinkedTriple 13.6-2
RMSCongruenceClassByLinkedTriple 13.6-4
RMSIsoByTriple 14.3-2
RMSNormalization 6.5-7
RookMonoid 7.2-2
RookPartitionMonoid 7.3-1
RowSpaceBasis, for a matrix over finite field 5.4-1
RowSpaceTransformation, for a matrix over finite field 5.4-1
RowSpaceTransformationInv, for a matrix over finite field 5.4-1
RZMSCongruenceByLinkedTriple 13.6-2
RZMSCongruenceClassByLinkedTriple 13.6-4
RZMSConnectedComponents 11.13-2
RZMSDigraph 11.13-1
RZMSIsoByTriple 14.3-2
RZMSNormalization 6.5-6
SameMinorantsSubgroup 11.14-7
SchutzenbergerGroup 10.4-2
SemigroupCongruence 13.2-1
SemigroupHomomorphismByFunction 14.1-2
SemigroupHomomorphismByFunctionNC 14.1-2
SemigroupHomomorphismByImages, for a semigroup and two lists 14.1-1
    for two semigroups 14.1-1
    for two semigroups and a list 14.1-1
    for two semigroups and two lists 14.1-1
SemigroupIdeal 9.1-1
SemigroupIdealOfReesCongruence 13.9-1
SemigroupIsomorphismByFunction 14.2-9
SemigroupIsomorphismByFunctionNC 14.2-9
SemigroupIsomorphismByImages, for a semigroup and two list 14.2-8
    for two semigroups 14.2-8
    for two semigroups and a list 14.2-8
    for two semigroups and two lists 14.2-8
Semigroups package overview 1.
SEMIGROUPS.DefaultOptionsRec 6.3-1
SemigroupsOfStrongSemilatticeOfSemigroups 8.3-6
SemigroupsTestAll 2.4-4
SemigroupsTestExtreme 2.4-3
SemigroupsTestInstall 2.4-1
SemigroupsTestStandard 2.4-2
SemilatticeOfStrongSemilatticeOfSemigroups 8.3-5
SimplifiedFpSemigroup 15.8-2
SimplifyFpSemigroup 15.8-1
SingularApsisMonoid 7.3-11
SingularBrauerMonoid 7.3-2
SingularCrossedApsisMonoid 7.3-11
SingularDualSymmetricInverseMonoid 7.3-7
SingularFactorisableDualSymmetricInverseMonoid 7.3-8
SingularJonesMonoid 7.3-3
SingularModularPartitionMonoid 7.3-10
SingularOrderEndomorphisms 7.1-5
SingularPartitionMonoid 7.3-1
SingularPlanarModularPartitionMonoid 7.3-10
SingularPlanarPartitionMonoid 7.3-9
SingularPlanarUniformBlockBijectionMonoid 7.3-8
SingularTransformationMonoid 7.1-4
SingularTransformationSemigroup 7.1-4
SingularUniformBlockBijectionMonoid 7.3-8
SLM 7.5-2
SmallerDegreePartialPermRepresentation 11.14-8
SmallerDegreeTransformationRepresentation 14.2-12
SmallestElementSemigroup 11.11-8
SmallestIdempotentPower 11.4-2
SmallestMultiplicationTable 14.2-2
SmallGeneratingSet 11.6-2
SmallInverseMonoidGeneratingSet 11.6-2
SmallInverseSemigroupGeneratingSet 11.6-2
SmallMonoidGeneratingSet 11.6-2
SmallSemigroupGeneratingSet 11.6-2
Source, for a graph inverse semigroup element 7.10-2
SpecialLinearMonoid 7.5-2
SpectralRadius 5.6-3
SSSE 8.3-2
StandardiseWord 15.1-3
StandardizeWord 15.1-3
Star, for a bipartition 3.2-6
    for a PBR 4.5-1
StarOp, for a bipartition 3.2-6
    for a PBR 4.5-1
StringToWord, for a string 15.1-4
StrongSemilatticeOfSemigroups 8.3-1
StructureDescription, for an H-class 10.4-6
StructureDescriptionMaximalSubgroups 10.4-4
StructureDescriptionSchutzenbergerGroups 10.4-3
StzAddGenerator 15.5-3
StzAddRelation 15.5-1
StzIsomorphism 15.6-3
StzPresentation 15.3-1
StzPrintGenerators 15.4-3
StzPrintPresentation 15.4-4
StzPrintRelation 15.4-2
StzPrintRelations 15.4-1
StzRemoveGenerator 15.5-4
StzRemoveRelation 15.5-2
StzSimplifyOnce 15.7-1
StzSimplifyPresentation 15.7-2
StzSubstituteRelation 15.5-5
SubsemigroupByProperty, for a semigroup and function 6.4-2
    for a semigroup, function, and limit on the size of the subsemigroup 6.4-2
Successors 5.3-5
SupersemigroupOfIdeal 9.2-3
TemperleyLiebMonoid 7.3-3
TexString 16.2-1
ThresholdNTPMatrix 5.1-12
ThresholdTropicalMatrix 5.1-11
TietzeBackwardMap 15.6-2
TietzeForwardMap 15.6-1
TikzLeftCayleyDigraph 16.3-2
TikzRightCayleyDigraph 16.3-2
TikzString 16.3-1
TraceOfSemigroupCongruence 13.7-5
TranslationalHull, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-11
TranslationalHullOfFamily, for IsFamily 18.1-8
TriangularBooleanMatMonoid 7.6-6
TrivialCongruence 13.10-4
TrivialSemigroup 7.8-1
TypeBitranslations, for IsBitranslationsSemigroup 18.1-9
TypeLeftTranslationsSemigroupElements, for IsLeftTranslationsSemigroup 18.1-9
TypeRightTranslationsSemigroupElements, for IsRightTranslationsSemigroup 18.1-9
UnderlyingRepresentatives, for IsTranslationsSemigroup 18.1-15
UnderlyingSemigroup, for IsBitranslationsSemigroup 18.1-7
    for IsTranslationsSemigroup 18.1-7
UnderlyingSemigroupOfCongruencePoset 13.4-9
UnderlyingSemigroupOfSemigroupWithAdjoinedZero 11.7-4
UniformBlockBijectionMonoid 7.3-8
UnitriangularBooleanMatMonoid 7.6-6
UniversalPBR 4.2-5
UniversalSemigroupCongruence 13.10-3
UnreducedFpSemigroup, for a presentation 15.3-5
    for a semigroup 15.8-3
UnweightedPrecedenceDigraph 5.6-4
VagnerPrestonRepresentation 11.14-9
VerticesOfGraphInverseSemigroup 7.10-8
WordToString, for a string and a list 15.1-1
WreathProduct 8.1-2
WriteGenerators 17.1-2
WriteMultiplicationTable 17.2-2
ZeroSemigroup 7.8-5

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Bib Ind

generated by GAPDoc2HTML