* (for bipartitions)  3.4   *  (for PBRs)  4.4  * (for matrices over a semiring)  5.2   *  (for Rees (0-)matrix semigroup isomorphisms by triples)  14.3-7  < (for bipartitions)  3.4  < (for PBRs)  4.4  < (for matrices over a semiring)  5.2  < (for Rees (0-)matrix semigroup isomorphisms by triples)  14.3-7  = (for bipartitions)  3.4  = (for PBRs)  4.4  = (for matrices over a semiring)  5.2   =  (for Rees (0-)matrix semigroup isomorphisms by triples)  14.3-7  \<, for Green's classes  10.3-1  \in  5.3-3   ^  (for Rees (0-)matrix semigroup isomorphisms by triples)  14.3-7  AnnularJonesMonoid  7.3-5  AntiIsomorphismDualFpMonoid  6.5-9  AntiIsomorphismDualFpSemigroup  6.5-9  AntiIsomorphismDualSemigroup  8.2-4  ApsisMonoid  7.3-11  AsBipartition  3.3-1  AsBlockBijection  3.3-2  AsBooleanMat  5.3-2  AsCongruenceByWangPair  13.8-3  AsInverseSemigroupCongruenceByKernelTrace  13.7-3  AsList  5.1-10  AsListCanonical  11.1-1  AsMatrix, for a filter and a matrix  5.1-6  AsMonoid  6.5-4  AsMutableList  5.1-10  AsPartialPerm, for a bipartition  3.3-4  AsPBR  4.3-1  AsPermutation, for a bipartition  3.3-5  AsSemigroup  6.5-3  AsSemigroupCongruenceByGeneratingPairs  13.6-6  AsSemigroupHomomorphismByFunction, for a semigroup homomorphism by images  14.1-6  AsSemigroupHomomorphismByImages, for a semigroup homomorphism by function  14.1-5  AsSemigroupIsomorphismByFunction, for a semigroup homomorphism by images  14.2-11  AsTransformation, for a bipartition  3.3-3  AutomorphismGroup, for a semigroup  14.2-7  Bipartition  3.2-1  BipartitionByIntRep  3.2-2  Bitranslation, for IsBitranslationsSemigroup, IsLeftTranslation, IsRightTranslation  18.1-6  BlistNumber  5.3-7  BLOCKS_NC  3.6-2  BooleanMat  5.3-1  BooleanMatNumber  5.3-6  BrandtSemigroup  7.8-7  BrauerMonoid  7.3-2  CanonicalBlocks  3.5-18  CanonicalBooleanMat  5.3-8  CanonicalForm, for a free inverse semigroup element  7.11-6  CanonicalMultiplicationTable  14.2-3  CanonicalMultiplicationTablePerm  14.2-4  CanonicalReesMatrixSemigroup  14.3-6  CanonicalReesZeroMatrixSemigroup  14.3-6  CanonicalTransformation  11.12-9  CanUseFroidurePin  6.1-4  CanUseGapFroidurePin  6.1-4  CanUseLibsemigroupsFroidurePin  6.1-4  CatalanMonoid  7.1-1  CayleyDigraphOfCongruences, for a semigroup  13.4-6  CayleyDigraphOfLeftCongruences, for a semigroup  13.4-6  CayleyDigraphOfRightCongruences, for a semigroup  13.4-6  CharacterTableOfInverseSemigroup  11.15-10  ClosureInverseMonoid  6.4-1  ClosureInverseSemigroup  6.4-1  ClosureMonoid  6.4-1  ClosureSemigroup  6.4-1  CodomainOfBipartition  3.5-11  ComponentRepsOfPartialPermSemigroup  11.13-1  ComponentRepsOfTransformationSemigroup  11.12-1  ComponentsOfPartialPermSemigroup  11.13-2  ComponentsOfTransformationSemigroup  11.12-2  CompositionMapping2, for IsRMSIsoByTriple  14.3-4  CongruenceByWangPair  13.8-2  CongruencesOfPoset  13.4-8  CongruencesOfSemigroup, for a semigroup  13.4-1  ContentOfFreeBandElement  7.9-7  ContentOfFreeBandElementCollection  7.9-7  CrossedApsisMonoid  7.3-11  CyclesOfPartialPerm  11.13-3  CyclesOfPartialPermSemigroup  11.13-4  CyclesOfTransformationSemigroup  11.12-3  DClass  10.1-2  DClasses  10.1-4  DClassNC  10.1-3  DClassOfHClass  10.1-1  DClassOfLClass  10.1-1  DClassOfRClass  10.1-1  DClassReps  10.1-5  DegreeOfBipartition  3.5-1  DegreeOfBipartitionCollection  3.5-1  DegreeOfBipartitionSemigroup  3.8-5  DegreeOfBlocks  3.6-5  DegreeOfPBR  4.5-2  DegreeOfPBRCollection  4.5-2  DegreeOfPBRSemigroup  4.6-2  DigraphOfAction, for a transformation semigroup, list, and action  11.12-4  DigraphOfActionOnPoints, for a transformation semigroup  11.12-5  DimensionOfMatrixOverSemiring  5.1-3  DimensionOfMatrixOverSemiringCollection  5.1-4  DirectProduct  8.1-1  DirectProductOp  8.1-1  DomainOfBipartition  3.5-10  DotLeftCayleyDigraph  16.1-4  DotRightCayleyDigraph  16.1-4  DotSemilatticeOfIdempotents  16.1-3  DotString  16.1-1  DualSemigroup  8.2-1  DualSymmetricInverseMonoid  7.3-7  DualSymmetricInverseSemigroup  7.3-7  ElementOfFpMonoid  15.2-3  ElementOfFpSemigroup  15.2-2  ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples)  14.3-7  ELM_LIST, for IsRMSIsoByTriple  14.3-3  EmbeddingFpMonoid  6.5-10  EmptyPBR  4.2-3  EndomorphismMonoid, for a digraph  7.1-6  EndomorphismsPartition  7.1-2  Enumerate  11.1-3  EnumeratorCanonical  11.1-1  EqualInFreeBand  7.9-8  EquivalenceRelationCanonicalLookup, for an equivalence relation over a finite semigroup  13.3-6  EquivalenceRelationCanonicalPartition  13.3-7  EquivalenceRelationLookup, for an equivalence relation over a finite semigroup  13.3-5  EUnitaryInverseCover  11.15-11  EvaluateWord  11.6-1  ExtRepOfObj, for a bipartition  3.5-3  FactorisableDualSymmetricInverseMonoid  7.3-8  Factorization  11.6-2  FixedPointsOfTransformationSemigroup, for a transformation semigroup  11.12-6  FpTietzeIsomorphism  15.8-4  FreeBand, for a given rank  7.9-1  FreeInverseSemigroup, for a given rank  7.11-1  FreeMonoidAndAssignGeneratorVars  15.2-4  FreeSemigroupAndAssignGeneratorVars  15.2-4  FreeSemilattice  7.8-4  FullBooleanMatMonoid  7.6-1  FullMatrixMonoid  7.5-1  FullPBRMonoid  7.4-1  FullTropicalMaxPlusMonoid  7.7-1  FullTropicalMinPlusMonoid  7.7-2  GeneralLinearMonoid  7.5-1  GeneratingCongruencesOfJoinSemilattice  13.4-12  GeneratingCongruencesOfLattice  13.8-4  Generators  11.7-1  GeneratorsOfSemigroupIdeal  9.2-1  GeneratorsOfStzPresentation  15.3-3  GeneratorsSmallest, for a semigroup  11.7-5  GLM  7.5-1  GossipMonoid  7.6-5  GraphInverseSemigroup  7.10-1  GraphOfGraphInverseSemigroup  7.10-5  GreensDClasses  10.1-4  GreensDClassOfElement  10.1-2  GreensDClassOfElementNC  10.1-3  GreensHClasses  10.1-4  GreensHClassOfElement  10.1-2  GreensHClassOfElementNC  10.1-3  GreensJClasses  10.1-4  GreensLClasses  10.1-4  GreensLClassOfElement  10.1-2  GreensLClassOfElementNC  10.1-3  GreensRClasses  10.1-4  GreensRClassOfElement  10.1-2  GreensRClassOfElementNC  10.1-3  GroupHClass  10.4-1  GroupOfUnits  11.9-1  HallMonoid  7.6-4  HClass  10.1-2  HClasses  10.1-4  HClassNC  10.1-3  HClassReps  10.1-5  HomomorphismsOfStrongSemilatticeOfSemigroups  8.3-7  Ideals, for a semigroup  9.1-2  IdempotentGeneratedSubsemigroup  11.10-3  Idempotents  11.10-1  IdentityBipartition  3.2-3  IdentityPBR  4.2-4  ImagesElm, for IsRMSIsoByTriple  14.3-5  ImageSetOfTranslation, for IsSemigroupTranslation  18.1-16  ImagesRepresentative, for IsRMSIsoByTriple  14.3-5  IndecomposableElements  11.7-6  IndexOfVertexOfGraphInverseSemigroup  7.10-9  IndexPeriodOfSemigroupElement  11.4-1  InfoSemigroups  2.5-1  InjectionNormalizedPrincipalFactor  10.4-7  InjectionPrincipalFactor  10.4-7  InnerLeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-13  InnerRightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-13  InnerTranslationalHull, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-14  Integers  5.1-8  IntRepOfBipartition  3.5-4  InverseMonoidByGenerators  6.2-1  InverseOp  5.6-1  InverseSemigroupByGenerators  6.2-1  InverseSemigroupCongruenceByKernelTrace  13.7-2  InverseSubsemigroupByProperty  6.4-3  IrredundantGeneratingSubset  11.7-3  IsActingSemigroup  6.1-2  IsAntiSymmetricBooleanMat  5.3-13  IsAperiodicSemigroup  12.1-19  IsBand  12.1-1  IsBipartition  3.1-1  IsBipartitionCollColl  3.1-2  IsBipartitionCollection  3.1-2  IsBipartitionMonoid  3.8-1  IsBipartitionPBR  4.5-8  IsBipartitionSemigroup  3.8-1  IsBitranslation, for IsAssociativeElement and IsMultiplicativeElementWithOne  18.1-2  IsBitranslationCollection  18.1-3  IsBlockBijection  3.5-16  IsBlockBijectionMonoid  3.8-2  IsBlockBijectionPBR  4.5-8  IsBlockBijectionSemigroup  3.8-2  IsBlockGroup  12.1-2  IsBlocks  3.6-1  IsBooleanMat  5.1-8  IsBooleanMatCollColl  5.1-9  IsBooleanMatCollection  5.1-9  IsBooleanMatMonoid  5.7-2  IsBooleanMatSemigroup  5.7-1  IsBrandtSemigroup  12.2-2  IsCayleyDigraphOfCongruences  13.4-4  IsCliffordSemigroup  12.2-1  IsColTrimBooleanMat  5.3-9  IsCombinatorialSemigroup  12.1-19  IsCommutativeSemigroup  12.1-3  IsCompletelyRegularSemigroup  12.1-4  IsCompletelySimpleSemigroup  12.1-22  IsCongruenceByWangPair  13.8-1  IsCongruenceClass  13.3-1  IsCongruenceFreeSemigroup  12.1-5  IsCongruencePoset  13.4-4  IsConnectedTransformationSemigroup, for a transformation semigroup  11.12-10  IsDTrivial  12.1-19  IsDualSemigroupElement  8.2-3  IsDualSemigroupRep  8.2-2  IsDualTransBipartition  3.5-13  IsDualTransformationPBR  4.5-10  IsEmptyPBR  4.5-5  IsEnumerated  11.1-4  IsEquivalenceBooleanMat  5.3-16  IsEUnitaryInverseSemigroup  12.2-3  IsFactorisableInverseMonoid  12.2-6  IsFinite  5.7-3  IsFInverseMonoid  12.2-5  IsFInverseSemigroup  12.2-4  IsFreeBand, for a given semigroup  7.9-3  IsFreeBandCategory  7.9-2  IsFreeBandElement  7.9-4  IsFreeBandElementCollection  7.9-5  IsFreeBandSubsemigroup  7.9-6  IsFreeInverseSemigroup  7.11-3  IsFreeInverseSemigroupCategory  7.11-2  IsFreeInverseSemigroupElement  7.11-4  IsFreeInverseSemigroupElementCollection  7.11-5  IsFullMatrixMonoid  7.5-3  IsGeneralLinearMonoid  7.5-3  IsGraphInverseSemigroup  7.10-4  IsGraphInverseSemigroupElement  7.10-4  IsGraphInverseSemigroupElementCollection  7.10-6  IsGraphInverseSubsemigroup  7.10-7  IsGreensClassNC  10.3-3  IsGreensDGreaterThanFunc  10.1-12  IsGroupAsSemigroup  12.1-7  IsHTrivial  12.1-19  IsIdempotentGenerated  12.1-8  IsIdentityPBR  4.5-6  IsIntegerMatrixMonoid  5.7-2  IsIntegerMatrixSemigroup  5.7-1  IsInverseSemigroupCongruenceByKernelTrace  13.7-1  IsInverseSemigroupCongruenceClassByKernelTrace  13.7-6  IsIsomorphicSemigroup  14.2-1  IsJoinIrreducible  12.2-7  IsLeftCongruenceClass  13.3-2  IsLeftSemigroupCongruence  13.1-2  IsLeftSimple  12.1-9  IsLeftTranslation, for IsSemigroupTranslation  18.1-1  IsLeftTranslationCollection  18.1-3  IsLeftZeroSemigroup  12.1-10  IsLinkedTriple  13.6-5  IsLTrivial  12.1-19  IsMajorantlyClosed  12.2-8  IsMatrixOverFiniteField  5.1-8  IsMatrixOverFiniteFieldCollColl  5.1-9  IsMatrixOverFiniteFieldCollection  5.1-9  IsMatrixOverFiniteFieldMonoid  5.7-2  IsMatrixOverFiniteFieldSemigroup  5.7-1  IsMatrixOverSemiring  5.1-1  IsMatrixOverSemiringCollColl  5.1-2  IsMatrixOverSemiringCollection  5.1-2  IsMatrixOverSemiringMonoid  5.7-2  IsMatrixOverSemiringSemigroup  5.7-1  IsMaximalSubsemigroup  11.11-3  IsMaxPlusMatrix  5.1-8  IsMaxPlusMatrixCollColl  5.1-9  IsMaxPlusMatrixCollection  5.1-9  IsMaxPlusMatrixMonoid  5.7-2  IsMaxPlusMatrixSemigroup  5.7-1  IsMcAlisterTripleSemigroup  8.4-1  IsMcAlisterTripleSemigroupElement  8.4-7  IsMinPlusMatrix  5.1-8  IsMinPlusMatrixCollColl  5.1-9  IsMinPlusMatrixCollection  5.1-9  IsMinPlusMatrixMonoid  5.7-2  IsMinPlusMatrixSemigroup  5.7-1  IsMonogenicInverseMonoid  12.2-10  IsMonogenicInverseSemigroup  12.2-9  IsMonogenicMonoid  12.1-12  IsMonogenicSemigroup  12.1-11  IsMonoidAsSemigroup  12.1-13  IsMTSE  8.4-7  IsNTPMatrix  5.1-8  IsNTPMatrixCollColl  5.1-9  IsNTPMatrixCollection  5.1-9  IsNTPMatrixMonoid  5.7-2  IsNTPMatrixSemigroup  5.7-1  IsomorphismMonoid  6.5-2  IsomorphismPermGroup  6.5-5  IsomorphismReesMatrixSemigroup, for a D-class  10.4-7  IsomorphismReesMatrixSemigroupOverPermGroup  6.5-8  IsomorphismReesZeroMatrixSemigroup  6.5-8  IsomorphismReesZeroMatrixSemigroupOverPermGroup  6.5-8  IsomorphismSemigroup  6.5-1  IsomorphismSemigroups  14.2-6  IsOntoBooleanMat  5.3-14  IsOrthodoxSemigroup  12.1-14  IsPartialOrderBooleanMat  5.3-15  IsPartialPermBipartition  3.5-15  IsPartialPermBipartitionMonoid  3.8-3  IsPartialPermBipartitionSemigroup  3.8-3  IsPartialPermPBR  4.5-11  IsPBR  4.1-1  IsPBRCollColl  4.1-2  IsPBRCollection  4.1-2  IsPBRMonoid  4.6-1  IsPBRSemigroup  4.6-1  IsPermBipartition  3.5-14  IsPermBipartitionGroup  3.8-4  IsPermPBR  4.5-12  IsRectangularBand  12.1-15  IsRectangularGroup  12.1-16  IsReesCongruenceClass  13.9-2  IsReflexiveBooleanMat  5.3-11  IsRegularGreensClass  10.3-2  IsRegularSemigroup  12.1-17  IsRightCongruenceClass  13.3-3  IsRightSemigroupCongruence  13.1-3  IsRightSimple  12.1-9  IsRightTranslation, for IsSemigroupTranslation  18.1-1  IsRightTranslationCollection  18.1-3  IsRightZeroSemigroup  12.1-18  IsRMSCongruenceByLinkedTriple  13.6-1  IsRMSCongruenceClassByLinkedTriple  13.6-3  IsRMSIsoByTriple  14.3-1  IsRowTrimBooleanMat  5.3-9  IsRTrivial  12.1-19  IsRZMSCongruenceByLinkedTriple  13.6-1  IsRZMSCongruenceClassByLinkedTriple  13.6-3  IsRZMSIsoByTriple  14.3-1  IsSelfDualSemigroup  12.1-29  IsSemiband  12.1-8  IsSemigroupCongruence  13.1-1  IsSemigroupHomomorphismByFunction  14.1-4  IsSemigroupHomomorphismByImages  14.1-3  IsSemigroupIsomorphismByFunction  14.2-10  IsSemigroupTranslation, for IsAssociativeElement and IsMultiplicativeElementWithOne  18.1-1  IsSemigroupTranslationCollection  18.1-3  IsSemigroupWithAdjoinedZero  12.1-20  IsSemilattice  12.1-21  IsSimpleSemigroup  12.1-22  IsSSSE  8.3-3  IsStrongSemilatticeOfSemigroups  8.3-4  IsStzPresentation  15.3-2  IsSubrelation  13.5-1  IsSubsemigroupOfFpMonoid  15.2-5  IsSuperrelation  13.5-2  IsSurjectiveSemigroup  12.1-6  IsSymmetricBooleanMat  5.3-10  IsSynchronizingSemigroup, for a transformation semigroup  12.1-23  IsTorsion  5.7-4  IsTotalBooleanMat  5.3-14  IsTransBipartition  3.5-12  IsTransformationBooleanMat  5.3-17  IsTransformationPBR  4.5-9  IsTransitive, for a transformation semigroup and a pos int  11.12-7  IsTransitiveBooleanMat  5.3-12  IsTrimBooleanMat  5.3-9  IsTropicalMatrix  5.1-8  IsTropicalMatrixCollection  5.1-9  IsTropicalMatrixMonoid  5.7-2  IsTropicalMatrixSemigroup  5.7-1  IsTropicalMaxPlusMatrix  5.1-8  IsTropicalMaxPlusMatrixCollColl  5.1-9  IsTropicalMaxPlusMatrixCollection  5.1-9  IsTropicalMaxPlusMatrixMonoid  5.7-2  IsTropicalMaxPlusMatrixSemigroup  5.7-1  IsTropicalMinPlusMatrix  5.1-8  IsTropicalMinPlusMatrixCollColl  5.1-9  IsTropicalMinPlusMatrixCollection  5.1-9  IsTropicalMinPlusMatrixMonoid  5.7-2  IsTropicalMinPlusMatrixSemigroup  5.7-1  IsUniformBlockBijection  3.5-17  IsUnitRegularMonoid  12.1-24  IsUniversalPBR  4.5-7  IsUniversalSemigroupCongruence  13.10-1  IsUniversalSemigroupCongruenceClass  13.10-2  IsVertex, for a graph inverse semigroup element  7.10-3  IsZeroGroup  12.1-25  IsZeroRectangularBand  12.1-26  IsZeroSemigroup  12.1-27  IsZeroSimpleSemigroup  12.1-28  IteratorCanonical  11.1-1  IteratorFromGeneratorsFile  17.1-3  IteratorFromMultiplicationTableFile  17.2-3  IteratorOfDClasses  10.2-2  IteratorOfDClassReps  10.2-1  IteratorOfHClassReps  10.2-1  IteratorOfLClassReps  10.2-1  IteratorOfLeftCongruences, for a semigroup  13.4-15  IteratorOfRClasses  10.2-2  IteratorOfRightCongruences, for a semigroup  13.4-15  JClasses  10.1-4  JoinIrreducibleDClasses  11.15-2  JoinLeftSemigroupCongruences  13.5-4  JoinRightSemigroupCongruences  13.5-4  JoinSemigroupCongruences  13.5-4  JoinSemilatticeOfCongruences  13.4-11  JonesMonoid  7.3-3  KernelOfSemigroupCongruence  13.7-4  KernelOfSemigroupHomomorphism  14.1-7  LargestElementSemigroup  11.12-8  LatticeOfCongruences, for a semigroup  13.4-5  LatticeOfLeftCongruences, for a semigroup  13.4-5  LatticeOfRightCongruences, for a semigroup  13.4-5  LClass  10.1-2  LClasses  10.1-4  LClassNC  10.1-3  LClassOfHClass  10.1-1  LClassReps  10.1-5  LeftBlocks  3.5-6  LeftCayleyDigraph  11.2-1  LeftCongruencesOfSemigroup, for a semigroup  13.4-1  LeftGreensMultiplier  10.5-1  LeftInverse, for a matrix over finite field  5.4-2  LeftOne, for a bipartition  3.2-4  LeftPartOfBitranslation  18.1-4  LeftProjection  3.2-4  LeftSemigroupCongruence  13.2-2  LeftTranslation, for IsLeftTranslationsSemigroup, IsGeneralMapping  18.1-5  LeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-10  LeftTranslationsSemigroupOfFamily, for IsFamily  18.1-8  LeftZeroSemigroup  7.8-6  Length  15.3-6  LengthOfLongestDClassChain  10.1-11  MajorantClosure  11.15-3  Matrix, for a filter and a matrix  5.1-5  MaximalDClasses  10.1-7  MaximalLClasses  10.1-7  MaximalRClasses  10.1-7  MaximalSubsemigroups, for a finite semigroup  11.11-1  McAlisterTripleSemigroup  8.4-2  McAlisterTripleSemigroupAction  8.4-6  McAlisterTripleSemigroupElement  8.4-8  McAlisterTripleSemigroupGroup  8.4-3  McAlisterTripleSemigroupPartialOrder  8.4-4  McAlisterTripleSemigroupSemilattice  8.4-5  MeetLeftSemigroupCongruences  13.5-3  MeetRightSemigroupCongruences  13.5-3  MeetSemigroupCongruences  13.5-3  MinimalCongruences, for a congruence poset  13.4-13  MinimalCongruencesOfSemigroup, for a semigroup  13.4-2  MinimalDClass  10.1-6  MinimalFactorization  11.6-3  MinimalFaithfulTransformationDegree  14.2-13  MinimalIdeal  11.8-1  MinimalIdealGeneratingSet  9.2-2  MinimalInverseMonoidGeneratingSet  11.7-4  MinimalInverseSemigroupGeneratingSet  11.7-4  MinimalLeftCongruencesOfSemigroup, for a semigroup  13.4-2  MinimalMonoidGeneratingSet  11.7-4  MinimalRightCongruencesOfSemigroup, for a semigroup  13.4-2  MinimalSemigroupGeneratingSet  11.7-4  MinimalWord, for free inverse semigroup element  7.11-7  MinimumGroupCongruence  13.7-7  Minorants  11.15-4  ModularPartitionMonoid  7.3-10  MonogenicSemigroup  7.8-2  MotzkinMonoid  7.3-6  MTSE  8.4-8  MultiplicativeNeutralElement, for an H-class  10.4-5  MultiplicativeZero  11.8-3  MunnSemigroup  7.2-1  NambooripadLeqRegularSemigroup  11.16-1  NambooripadPartialOrder  11.16-2  NaturalLeqBlockBijection  3.4-3  NaturalLeqInverseSemigroup  11.15-1  NaturalLeqPartialPermBipartition  3.4-2  NonTrivialEquivalenceClasses  13.3-4  NonTrivialFactorization  11.6-4  NormalizedPrincipalFactor  10.4-8  NormalizeSemigroup  5.7-5  NrBitranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-12  NrBlocks, for a bipartition  3.5-9  NrDClasses  10.1-9  NrHClasses  10.1-9  NrIdempotents  11.10-2  NrLClasses  10.1-9  NrLeftBlocks  3.5-7  NrLeftTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-12  NrMaximalSubsemigroups  11.11-2  NrRClasses  10.1-9  NrRegularDClasses  10.1-8  NrRightBlocks  3.5-8  NrRightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-12  NrTransverseBlocks, for a bipartition  3.5-2  NumberBlist  5.3-7  NumberBooleanMat  5.3-6  NumberOfLeftCongruences, for a semigroup  13.4-14  NumberOfRightCongruences, for a semigroup  13.4-14  NumberPBR  4.5-4  OnBlist  5.3-4  OneInverseOfSemigroupElement  11.5-1  OnLeftBlocks  3.7-2  OnLeftCongruenceClasses  13.3-8  OnMultiplicationTable  14.2-5  OnRightBlocks  3.7-1  OnRightCongruenceClasses  13.3-9  Order  5.5-3  OrderAntiEndomorphisms  7.1-5  OrderEndomorphisms, monoid of order preserving transformations  7.1-5  ParseRelations  15.2-1  PartialBrauerMonoid  7.3-2  PartialDualSymmetricInverseMonoid  7.3-7  PartialJonesMonoid  7.3-4  PartialOrderAntiEndomorphisms  7.1-5  PartialOrderEndomorphisms  7.1-5  PartialOrderOfDClasses  10.1-10  PartialOrderOfLClasses  10.1-10  PartialOrderOfRClasses  10.1-10  PartialPermLeqBipartition  3.4-1  PartialTransformationMonoid  7.1-3  PartialUniformBlockBijectionMonoid  7.3-8  PartitionMonoid  7.3-1  PBR  4.2-1  PBRNumber  4.5-4  PeriodNTPMatrix  5.1-12  PermLeftQuoBipartition  3.4-4  PlanarModularPartitionMonoid  7.3-10  PlanarPartitionMonoid  7.3-9  PlanarUniformBlockBijectionMonoid  7.3-8  PODI, monoid of order preserving or reversing partial perms  7.2-3  POI, monoid of order preserving partial perms  7.2-3  POPI, monoid of orientation preserving partial perms  7.2-3  PORI, monoid of orientation preserving or reversing partial perms  7.2-3  PosetOfCongruences  13.4-10  PosetOfPrincipalCongruences, for a semigroup  13.4-7  PosetOfPrincipalLeftCongruences, for a semigroup  13.4-7  PosetOfPrincipalRightCongruences, for a semigroup  13.4-7  PositionCanonical  11.1-2  PrimitiveIdempotents  11.15-5  PrincipalCongruencesOfSemigroup, for a semigroup  13.4-3  PrincipalFactor  10.4-8  PrincipalLeftCongruencesOfSemigroup, for a semigroup  13.4-3  PrincipalRightCongruencesOfSemigroup, for a semigroup  13.4-3  ProjectionFromBlocks  3.6-6  RadialEigenvector  5.6-2  Random, for a semigroup  11.3-1  RandomBipartition  3.2-7  RandomBlockBijection  3.2-7  RandomInverseMonoid  6.6-1  RandomInverseSemigroup  6.6-1  RandomMatrix, for a filter and a matrix  5.1-7  RandomMonoid  6.6-1  RandomPBR  4.2-2  RandomSemigroup  6.6-1  RandomWord, for two integers  15.1-2  Range, for a graph inverse semigroup element  7.10-2  RankOfBipartition  3.5-2  RankOfBlocks  3.6-4  RClass  10.1-2  RClasses  10.1-4  RClassNC  10.1-3  RClassOfHClass  10.1-1  RClassReps  10.1-5  ReadGenerators  17.1-1  ReadMultiplicationTable  17.2-1  RectangularBand  7.8-3  ReflexiveBooleanMatMonoid  7.6-3  RegularBooleanMatMonoid  7.6-2  RegularDClasses  10.1-8  RelationsOfStzPresentation  15.3-4  RepresentativeOfMinimalDClass  11.8-2  RepresentativeOfMinimalIdeal  11.8-2  RightBlocks  3.5-5  RightCayleyDigraph  11.2-1  RightCongruencesOfSemigroup, for a semigroup  13.4-1  RightCosetsOfInverseSemigroup  11.15-6  RightGreensMultiplier  10.5-1  RightInverse, for a matrix over finite field  5.4-2  RightOne, for a bipartition  3.2-5  RightPartOfBitranslation  18.1-4  RightProjection  3.2-5  RightSemigroupCongruence  13.2-3  RightTranslation, for IsRightTranslationsSemigroup, IsGeneralMapping  18.1-5  RightTranslations, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-10  RightTranslationsSemigroupOfFamily, for IsFamily  18.1-8  RightZeroSemigroup  7.8-6  RMSCongruenceByLinkedTriple  13.6-2  RMSCongruenceClassByLinkedTriple  13.6-4  RMSIsoByTriple  14.3-2  RMSNormalization  6.5-7  RookMonoid  7.2-2  RookPartitionMonoid  7.3-1  RowSpaceBasis, for a matrix over finite field  5.4-1  RowSpaceTransformation, for a matrix over finite field  5.4-1  RowSpaceTransformationInv, for a matrix over finite field  5.4-1  RZMSCongruenceByLinkedTriple  13.6-2  RZMSCongruenceClassByLinkedTriple  13.6-4  RZMSConnectedComponents  11.14-2  RZMSDigraph  11.14-1  RZMSIsoByTriple  14.3-2  RZMSNormalization  6.5-6  SameMinorantsSubgroup  11.15-7  SchutzenbergerGroup  10.4-2  SemigroupCongruence  13.2-1  SemigroupHomomorphismByFunction  14.1-2  SemigroupHomomorphismByFunctionNC  14.1-2  SemigroupHomomorphismByImages, for a semigroup and two lists  14.1-1  SemigroupIdeal  9.1-1  SemigroupIdealOfReesCongruence  13.9-1  SemigroupIsomorphismByFunction  14.2-9  SemigroupIsomorphismByFunctionNC  14.2-9  SemigroupIsomorphismByImages, for a semigroup and two list  14.2-8  SEMIGROUPS.DefaultOptionsRec  6.3-1  SemigroupsOfStrongSemilatticeOfSemigroups  8.3-6  SemigroupsTestAll  2.4-4  SemigroupsTestExtreme  2.4-3  SemigroupsTestInstall  2.4-1  SemigroupsTestStandard  2.4-2  SemilatticeOfStrongSemilatticeOfSemigroups  8.3-5  SimplifiedFpSemigroup  15.8-2  SimplifyFpSemigroup  15.8-1  SingularApsisMonoid  7.3-11  SingularBrauerMonoid  7.3-2  SingularCrossedApsisMonoid  7.3-11  SingularDualSymmetricInverseMonoid  7.3-7  SingularFactorisableDualSymmetricInverseMonoid  7.3-8  SingularJonesMonoid  7.3-3  SingularModularPartitionMonoid  7.3-10  SingularOrderEndomorphisms  7.1-5  SingularPartitionMonoid  7.3-1  SingularPlanarModularPartitionMonoid  7.3-10  SingularPlanarPartitionMonoid  7.3-9  SingularPlanarUniformBlockBijectionMonoid  7.3-8  SingularTransformationMonoid  7.1-4  SingularTransformationSemigroup  7.1-4  SingularUniformBlockBijectionMonoid  7.3-8  SLM  7.5-2  SmallerDegreePartialPermRepresentation  11.15-8  SmallerDegreeTransformationRepresentation  14.2-12  SmallestElementSemigroup  11.12-8  SmallestIdempotentPower  11.4-2  SmallestMultiplicationTable  14.2-2  SmallGeneratingSet  11.7-2  SmallInverseMonoidGeneratingSet  11.7-2  SmallInverseSemigroupGeneratingSet  11.7-2  SmallMonoidGeneratingSet  11.7-2  SmallSemigroupGeneratingSet  11.7-2  Source, for a graph inverse semigroup element  7.10-2  SpecialLinearMonoid  7.5-2  SpectralRadius  5.6-3  SSSE  8.3-2  StandardiseWord  15.1-3  StandardizeWord  15.1-3  Star, for a bipartition  3.2-6  StarOp, for a bipartition  3.2-6  StringToWord, for a string  15.1-4  StrongSemilatticeOfSemigroups  8.3-1  StructureDescription, for an H-class  10.4-6  StructureDescriptionMaximalSubgroups  10.4-4  StructureDescriptionSchutzenbergerGroups  10.4-3  StzAddGenerator  15.5-3  StzAddRelation  15.5-1  StzIsomorphism  15.6-3  StzPresentation  15.3-1  StzPrintGenerators  15.4-3  StzPrintPresentation  15.4-4  StzPrintRelation  15.4-2  StzPrintRelations  15.4-1  StzRemoveGenerator  15.5-4  StzRemoveRelation  15.5-2  StzSimplifyOnce  15.7-1  StzSimplifyPresentation  15.7-2  StzSubstituteRelation  15.5-5  SubsemigroupByProperty, for a semigroup and function  6.4-2  Successors  5.3-5  SupersemigroupOfIdeal  9.2-3  TemperleyLiebMonoid  7.3-3  TexString  16.2-1  ThresholdNTPMatrix  5.1-12  ThresholdTropicalMatrix  5.1-11  TietzeBackwardMap  15.6-2  TietzeForwardMap  15.6-1  TikzLeftCayleyDigraph  16.3-2  TikzRightCayleyDigraph  16.3-2  TikzString  16.3-1  TraceOfSemigroupCongruence  13.7-5  TranslationalHull, for IsSemigroup and CanUseFroidurePin and IsFinite  18.1-11  TranslationalHullOfFamily, for IsFamily  18.1-8  TriangularBooleanMatMonoid  7.6-6  TrivialCongruence  13.10-4  TrivialSemigroup  7.8-1  TypeBitranslations, for IsBitranslationsSemigroup  18.1-9  TypeLeftTranslationsSemigroupElements, for IsLeftTranslationsSemigroup  18.1-9  TypeRightTranslationsSemigroupElements, for IsRightTranslationsSemigroup  18.1-9  UnderlyingRepresentatives, for IsTranslationsSemigroup  18.1-15  UnderlyingSemigroup, for IsBitranslationsSemigroup  18.1-7  UnderlyingSemigroupOfCongruencePoset  13.4-9  UnderlyingSemigroupOfSemigroupWithAdjoinedZero  11.8-4  UniformBlockBijectionMonoid  7.3-8  UnitriangularBooleanMatMonoid  7.6-6  UniversalPBR  4.2-5  UniversalSemigroupCongruence  13.10-3  UnreducedFpSemigroup, for a presentation  15.3-5  UnweightedPrecedenceDigraph  5.6-4  VagnerPrestonRepresentation  11.15-9  VerticesOfGraphInverseSemigroup  7.10-8  WordToString, for a string and a list  15.1-1  WreathProduct  8.1-2  WriteGenerators  17.1-2  WriteMultiplicationTable  17.2-2  ZeroSemigroup  7.8-5  
generated by GAPDoc2HTML